Menu

IoT FEATURE NEWS

Cambridge University Researchers Make Near-Infinite Power Supply for IoT

By

Want your IoT devices to last a billion years? Use an AA battery, or just suck the leakage out of your transistors, according to a new paper in the American Association for the Advancement of Science journal Science, published in the October 21 issue.

The two researchers, Sungsik Lee, Arokia Nathan, are both in the Electrical Engineering Division of the Engineering department of the University of Cambridge in the UK, have designed new ultralow power transistors that, if all goes as described, could function for years without a battery. They operate on ‘scavenged’ energy from their environment, and therefore should be able to power devices for months or years without a battery, and provide enough juice for wearable or implantable electronics.

It uses a principle similar to sleep mode, much like other low-power devices, but adds in the ability to harness electrical near-off-state current for its operations. This energy leakage is apparently common to all transistors, but this is the first time that it has been effectively captured and used functionally, the researchers said.

The transistors can be produced at low temperatures and can be printed on almost any material, from glass and plastic to polyester and paper. They are based on a unique geometry which uses a ‘non-desirable’ characteristic, namely the point of contact between the metal and semiconducting components of a transistor, or the ‘Schottky barrier.’

“We’re challenging conventional perception of how a transistor should be,” said Nathan. “We’ve found that these Schottky barriers, which most engineers try to avoid, actually have the ideal characteristics for the type of ultralow power applications we’re looking at, such as wearable or implantable electronics for health monitoring. This will bring about a new design model for ultralow power sensor interfaces and analogue signal processing in wearable and implantable devices, all of which are critical for the Internet of Things.”

The new design also addresses the issue of scale. As transistors get smaller, the electrodes will start to influence the behavior of one another and the voltages spread, so usually transistors fail to function below a certain size. With this design, the researchers were able to use the Schottky barriers to keep the electrodes independent from one another, so that the transistors can be scaled down to very small geometries.

The design also achieves a high level of gain, or signal amplification. The transistor’s operating voltage is less than a volt, with power consumption below a billionth of a watt.

“If we were to draw energy from a typical AA battery based on this design, it would last for a billion years,” said Lee. “Using the Schottky barrier allows us to keep the electrodes from interfering with each other in order to amplify the amplitude of the signal even at the state where the transistor is almost switched off.”

Sorry Doc, looks like we don’t need your 1.21 gigawatts after all. 




Edited by Alicia Young
Get stories like this delivered straight to your inbox. [Free eNews Subscription]

Editorial Director

SHARE THIS ARTICLE
Related Articles

Rising Edge Computing Investments to Reach $350B by 2027, According to IDC

By: Alex Passett    3/27/2024

Worldwide spending on edge computing is expected to surge (and then keep going) for the foreseeable future, according to the International Data Corpor…

Read More

ZEDEDA Adds Lisa Edwards as New Board Member, Seeks Opportunities to Strengthen Operations and Scale

By: Alex Passett    3/26/2024

Earlier this morning, ZEDEDA announced the addition of Lisa Edwards to its board of directors.

Read More

An Existing IoT Collab, Emboldened: Digi International and Telit Cinterion Transform Solutions with 5G RedCap Integration

By: Alex Passett    3/25/2024

The ongoing industry collaboration between Digi International and Telit Cinterion signals strong support for the mainstream showcasing of 5G for IoT a…

Read More

Telit Cinterion's 5G LGA Modules, Powered by Snapdragon from Qualcomm, to Create a Big Leap in IoT Connectivity

By: Alex Passett    3/25/2024

Telit Cinterion recently unveiled its FE990B34/40 LGA family of modules, powered by the Snapdragon X72 5G Modem-RF System from Qualcomm Technologies, …

Read More

Embracing Innovation in Mining: The Role of Network-Aware Applications in the Digital Transformation

By: Special Guest    3/21/2024

Shabodi leverages private 5G network capabilities and enables the development of network-aware applications to enhance operational efficiency, automat…

Read More